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A package for atom-typing as well as applying and disseminating force fields

GETTING STARTED 1
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CHAPTER

ONE

OVERVIEW

Foyer is an open-source Python tool that provides a framework for the application and dissemination of classical molec-
ular modeling force fields. Importantly, it enables users to define and apply atom-typing rules in a format that is simul-
taneously human- and machine-readable. A primary goal of foyer is to eliminate ambiguity in the atom-typing and
force field application steps of molecular simulations in order to improve reproducibility. Foyer force fields are defined
in an XML format derived from the OpenMM XML specification. SMARTS strings are used to define the chemical
context of each atom type and “overrides” are used to define clear precedence of different atom types. Foyer is designed
to be compatible with the other tools in the Molecular Simulation Design Framework (MoSDeF) ecosystem.

3

http://docs.openmm.org/latest/userguide/application.html#basic-concepts
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://mosdef.org


foyer Documentation, Release 0.12.0

4 Chapter 1. Overview



CHAPTER

TWO

RESOURCES

• Installation guide: Instructions for installing foyer.

• Quickstart: A brief introduction to foyer.

• MoSDeF: Learn more about the Molecular Simulation Design Framework.

• Foyer paper: The journal article describing foyer.

• GitHub repository: Download the source code or contribute to the development of foyer.

• Issue Tracker: Report issues and request features.
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CITATION

If you use foyer in your research, please cite the foyer paper. See here for details.
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FOUR

INSTALLATION

Complete installation instructions are here. A conda installation is available:

conda create --name foyer foyer -c conda-forge

9
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FIVE

EXAMPLE

Annotate an OpenMM .xml force field file with SMARTS-based atomtypes:

<ForceField>
<AtomTypes>
<Type name="opls_135" class="CT" element="C" mass="12.01100" def="[C;X4](C)(H)(H)H"␣

→˓desc="alkane CH3"/>
<Type name="opls_140" class="HC" element="H" mass="1.00800" def="H[C;X4]" desc=

→˓"alkane H"/>
</AtomTypes>
</ForceField>

Apply the forcefield to arbitrary chemical topologies. We currently support:

• OpenMM.Topology

• ParmEd.Structure

• mBuild.Compound

from foyer import Forcefield
import parmed as pmd

untyped_ethane = pmd.load_file('ethane.mol2', structure=True)
oplsaa = Forcefield(forcefield_files='oplsaa.xml')
ethane = oplsaa.apply(untyped_ethane)

# Save to any format supported by ParmEd
ethane.save('ethane.top')
ethane.save('ethane.gro')

11
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GETTING STARTED?

Check out our example template for disseminating force fields: https://github.com/mosdef-hub/forcefield_template

13
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TABLE OF CONTENTS

8.1 Installation

For most users we recommend a conda installation:

conda install -c conda-forge -c omnia foyer

If you wish to install from source, you can use the following commands:

git clone https://github.com/mosdef-hub/foyer.git
cd foyer
conda env create -f environment.yml
conda activate foyer
pip install .

If you are using windows, you should use environment-win.yml rather than environment.yml.

If you plan on contributing to the development of foyer, we recommend you create an editable installation with all the
required dependencies:

git clone https://github.com/mosdef-hub/foyer.git
cd foyer
conda env create -f environment-dev.yml
conda activate foyer-dev
pip install -e .

8.1.1 Install pre-commit

We use [pre-commit](https://pre-commit.com/) to automatically handle our code formatting and this package is in-
cluded in the dev environment. With the foyer-dev conda environment active, pre-commit can be installed locally as
a git hook by running:

$ pre-commit install

And (optional) all files can be checked by running:

$ pre-commit run --all-files

17
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8.1.2 Supported Python Versions

Python 3.6 and 3.7 are officially supported, including testing during development and packaging. Other Python ver-
sions, such as 3.8 and 3.5 and older, may successfully build and function but no guarantee is made.

8.1.3 Testing your installation

foyer uses py.test for unit testing. To run them simply type run the following while in the base directory:

$ conda install pytest
$ py.test -v

8.1.4 Building the documentation

foyer uses sphinx to build its documentation. To build the docs locally, run the following while in the docs directory:

$ conda env create -f docs-env.yml
$ conda activate foyer-docs
$ make html

8.2 Using foyer with Docker

As much of scientific software development happens in unix platforms, to avoid the quirks of development dependent
on system you use, a recommended way is to use docker or other containerization technologies. This section is a how
to guide on using foyer with docker.

8.2.1 Prerequisites

A docker installation in your machine. Follow this link to get a docker installation working on your machine. If you
are not familiar with docker and want to get started with docker, the Internet is full of good tutorials like the ones here
and here.

8.2.2 Quick Start

After you have a working docker installation, please use the following command to use run a jupyter-notebook with all
the dependencies for foyer installed:

$ docker pull mosdef/foyer:latest
$ docker run -it --name foyer -p 8888:8888 mosdef/foyer:latest

If no command is provided to the container (as above), the container starts a jupyter-notebook at the container
location /home/anaconda/data. Then, the notebook can be accessed by copying and pasting the notebook URL into
a web browser on your computer. When finished with the session, you can use Ctr`+`C and follow instruction to exit
the notebook as usual. The docker container will exit upon notebook shutdown.

18 Chapter 8. Table of Contents
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Warning: Containers by nature are ephemeral, so filesystem changes (e.g., adding a new notebook) only persist
until the end of the container’s lifecycle. If the container is removed, any changes or code addition will not persist.
See the section below for persistent data.

Note: The -it flags connect your keyboard to the terminal running in the container. You may run the prior command
without those flags, but be aware that the container will not respond to any keyboard input. In that case, you would
need to use the docker ps and docker kill commands to shut down the container.

8.2.3 Persisting User Volumes

If you will be using foyer from a docker container, a recommended way is to mount what are called user volumes in the
container. User volumes will provide a way to persist all filesystem/code additions made to a container regardless of
the container lifecycle. For example, you might want to create a directory called foyer-notebooks in your local system,
which will store all your foyer notebooks/code. In order to make that accessible to the container(where the notebooks
will be created/edited), use the following steps:

$ mkdir -p /path/to/foyer-notebooks
$ cd /path/to/foyer-notebooks
$ docker run -it --name foyer --mount type=bind,source=$(pwd),target=/home/anaconda/data␣
→˓-p 8888:8888 mosdef/foyer:latest

You can easily mount a different directory from your local machine by changing source=$(pwd) to source=/path/
to/my/favorite/directory.

Note: The --mount flag mounts a volume into the docker container. Here we use a bind mount to bind the current
directory on our local filesystem to the /home/anaconda/data location in the container. The files you see in the
jupyter-notebook browser window are those that exist on your local machine.

Warning: If you are using the container with jupyter notebooks you should use the /home/anaconda/data
location as the mount point inside the container; this is the default notebook directory.

Jupyter notebooks are a great way to explore new software and prototype code. However, when it comes time for
production sciences, it is often better to work with python scripts. In order to execute a python script (example.py)
that exists in the current working directory of your local machine, run:

$ docker run --mount type=bind,source=$(pwd),target=/home/anaconda/data mosdef/foyer:
→˓latest "python data/test.py"

Note that once again we are bind mounting the current working directory to /home/anaconda/data. The command
we pass to the container is python data/test.py. Note the prefix data/ to the script; this is because we enter the
container in the home folder (/home/anaconda), but our script is located under /home/anaconda/data.

Warning: Do not bind mount to target=/home/anaconda. This will cause errors.

If you don’t want a Jupyter notebook, but just want a Python interpreter, you can run:

If you don’t need access to any local data, you can of course drop the --mount command:

8.2. Using foyer with Docker 19
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8.2.4 Cleaning Up

You can remove the created container by using the following command:

$ docker container rm foyer

Note: Instead of using latest, you can use the image mosdef/foyer:stable for most recent stable release of foyer
and run the tutorials.

8.3 Quickstart

Foyer is distributed with partial support for the OPLS-AA force field. First, we will load a PDB file (here) with parmed
and then load the OPLS-AA force field with foyer.

import foyer
import parmed

mol = parmed.load("ethane.pdb")
ff = foyer.forcefield.load_OPLSAA()

mol_ff = ff.apply(mol)

mol_ff.save("ethane.gro")
mol_ff.save("ethane.top")

The first step loads ethane.pdb. mol is a parmed.Structure. Next, we load the OPLS force field as a foyer.
forcefield object. Then, we apply the force field to the molecule. mol_ff is also a parmed.Structure, but it now
contains all of the force field parameters (Lennard-Jones parameters, partial charges, bond, angle, dihedral parameters).
Finally, we save the parameterized structure to input formats for GROMACS. In this example, ff has the force field
parameters for the OPLS-AA force field. You can view the XML file with all of the parameters here. As you can see
from the XML file, SMARTS strings have been added for many of the OPLS-AA atom types. You should always verify
that the atom-typing is performed correctly for a single molecule before applying the force field to your entire system.
If you wish to add supported molecules to the OPLS-AA force field, you can view this issue

The real power of foyer is to build and distribute XML files with your own parameter sets. Here we show an example
of an XML file for pentafluoroethane. This is a custom parameter set taken from this paper.

<ForceField name="example_custom" version="0.0.1">
<AtomTypes>
<Type name="C1" class="c3" element="C" mass="12.011" def="C(C)(H)(F)(F)" desc="carbon␣

→˓bonded to 2 Fs, a H, and another carbon"/>
<Type name="C2" class="c3" element="C" mass="12.011" def="C(C)(F)(F)(F)" desc="carbon␣

→˓bonded to 3 Fs and another carbon"/>
<Type name="F1" class="f" element="F" mass="18.998" def="FC(C)(F)H" desc="F bonded to␣

→˓C1"/>
<Type name="F2" class="f" element="F" mass="18.998" def="FC(C)(F)F" desc="F bonded to␣

→˓C2"/>
<Type name="H1" class="h2" element="H" mass="1.008" def="H(C)" desc="single H bonded␣

→˓to C1"/>
</AtomTypes>
<HarmonicBondForce>

(continues on next page)
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(continued from previous page)

<Bond class1="c3" class2="c3" length="0.15375" k="251793.12"/>
<Bond class1="c3" class2="f" length="0.13497" k="298653.92"/>
<Bond class1="c3" class2="h2" length="0.10961" k="277566.56"/>

</HarmonicBondForce>
<HarmonicAngleForce>
<Angle class1="c3" class2="c3" class3="f" angle="1.9065976748786053" k="553.1248"/>
<Angle class1="c3" class2="c3" class3="h2" angle="1.9237019015481498" k="386.6016"/>
<Angle class1="f" class2="c3" class3="f" angle="1.8737854849411122" k="593.2912"/>
<Angle class1="f" class2="c3" class3="h2" angle="1.898743693244631" k="427.6048"/>

</HarmonicAngleForce>
<PeriodicTorsionForce>
<Proper class1="f" class2="c3" class3="c3" class4="f" periodicity1="3" k1="0.0" phase1=

→˓"0.0" periodicity2="1" k2="5.0208" phase2="3.141592653589793"/>
<Proper class1="" class2="c3" class3="c3" class4="" periodicity1="3" k1="0.

→˓6508444444444444" phase1="0.0"/>
</PeriodicTorsionForce>
<NonbondedForce coulomb14scale="0.833333" lj14scale="0.5">
<Atom type="C1" charge="0.224067" sigma="0.371084" epsilon="0.304665"/>
<Atom type="C2" charge="0.500886" sigma="0.393872" epsilon="0.222541"/>
<Atom type="F1" charge="-0.167131" sigma="0.298239" epsilon="0.208221"/>
<Atom type="F2" charge="-0.170758" sigma="0.276783" epsilon="0.237635"/>
<Atom type="H1" charge="0.121583" sigma="0.264229" epsilon="0.071381"/>

</NonbondedForce>
</ForceField>

The SMARTS strings are defined in the <AtomTypes> section. The bond, angle, and dihedral parameters are defined
in the following sections. This time we load a .gro file for HFC-125 (here), load our custom force field XML file
(here), and then apply the force field parameters.

import foyer
import parmed

mol = parmed.load("hfc125.gro")
ff = foyer.ForceField("ff_custom.xml")

mol_ff = ff.apply(mol)

mol_ff.save("hfc125.top")

Foyer can be used to save input files for any simulation engine supported by parmed. If you also install mbuild, then
a variety of other simulation engines are also supported.

8.3. Quickstart 21
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8.4 SMARTS-based atomtyping

Foyer allows users to describe atomtypes using a modified version of SMARTS You may already be familiar with
SMILES representations for describing chemical structures. SMARTS is a straightforward extension of this notation.

8.4.1 Basic usage

Consider the following example defining the OPLS-AA atomtypes for a methyl group carbon and its hydrogen atoms:

<ForceField>
<AtomTypes>
<Type name="opls_135" class="CT" element="C" mass="12.01100" def="[C;X4](C)(H)(H)H"␣

→˓desc="alkane CH3"/>
<Type name="opls_140" class="HC" element="H" mass="1.00800" def="H[C;X4]" desc=

→˓"alkane H"/>
</AtomTypes>
</ForceField>

This .xml format is an extension of the OpenMM force field format The above example utilizes two additional .xml
attributes supported by foyer: def and desc. The atomtype that we are attempting to match is always the first token
in the SMARTS string, in the above example, [C;X4] and H. The opls_135 (methyl group carbon) is defined by a
SMARTS string indicated a carbon with 4 bonds, a carbon neighbor and 3 hydrogen neighbors. The opls_140 (alkane
hydrogen) is defined simply as a hydrogen atom bonded to a carbon with 4 bonds.

8.4.2 Overriding atomtypes

When multiple atomtype definitions can apply to a given atom, we must establish precedence between those definitions.
Many other atomtypers determine rule precedence by placing more specific rules first and evaluate those in sequence,
breaking out of the loop as soon as a match is found.

While this approach works, it becomes more challenging to maintain the correct ordering of rules as the number of
atomtypes grows. Foyer iteratively runs all rules on all atoms and each atom maintains a whitelist (rules that apply)
and a blacklist (rules that have been superseded by another rule). The set difference between the white- and blacklists
yields the correct atomtype if the force field is implemented correctly.

We can add a rule to a blacklist using the overrides attribute in the .xml file. To illustrate an example where overriding
can be used consider the following types describing alkenes and benzene:

<ForceField>
<AtomTypes>
<Type name="opls_141" class="CM" element="C" mass="12.01100" def="[C;X3](C)(C)C" desc=

→˓"alkene C (R2-C=)"/>
<Type name="opls_142" class="CM" element="C" mass="12.01100" def="[C;X3](C)(C)H" desc=

→˓"alkene C (RH-C=)"/>
<Type name="opls_144" class="HC" element="H" mass="1.00800" def="[H][C;X3]" desc=

→˓"alkene H"/>
<Type name="opls_145" class="CA" element="C" mass="12.01100" def="[C;X3;r6]1[C;X3;

→˓r6][C;X3;r6][C;X3;r6][C;X3;r6][C;X3;r6]1" overrides="opls_141,opls_142"/>
<Type name="opls_146" class="HA" element="H" mass="1.00800" def="[H][C;%opls_145]"␣

→˓overrides="opls_144" desc="benzene H"/>
</AtomTypes>
</ForceField>
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If we’re atomtyping a benzene molecule, the carbon atoms will match the SMARTS patterns for both opls_142 and
opls_145. Without the overrides attribute, foyer will notify you that multiple atomtypes were found for each carbon.
Providing the overrides indicates that if the opls_145 pattern matches, it should supersede the specified rules.

8.4.3 Supported SMARTS Grammar

We currently do not (yet) support all of SMARTS’ features. Here we’re keeping track of which portions are supported.

8.5 Parameter definitions

Parameter definitions within force field XMLs follow the same conventions as defined in the OpenMM documentation.
Currently, only certain functional forms for molecular forces are supported, while future developments are expected to
allow Foyer to support any desired functional form, including reactive and tabulated potentials. The currently supported
functional forms for molecular forces are:

• Nonbonded

– Lennard-Jones (12-6)

• Bonds

– Harmonic

• Angles

– Harmonic

• Torsions (proper)

– Periodic

– Ryckaert-Bellemans

• Torsions (improper)

– Periodic

Definitions for each molecular force follow the OpenMM standard.

The harmonic bond potential is defined as

𝐸 =
1

2
𝑘(𝑟 − 𝑟0)

2

where k is the bond coefficient ( 𝑒𝑛𝑒𝑟𝑔𝑦
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2 ) and r0 is the equilibrium bond distance. Note the factor of 1

2 .

Dihedral potentials reported as a fourier series (e.g., OPLS) can be converted to Ryckaert-Bellemans (RB) torsions as
specified in the GROMACS User Manual.

8.5.1 Classes vs. Types

OpenMM allows users to specify either a class or a type (See Atom Types and Atom Classes), to define each particle
within the force definition. Here, type refers to a specific atom type (as defined in the <AtomTypes> section), while
class refers to a more general description that can apply to multiple atomtypes (i.e. multiple atomtypes may share the
same class). This aids in limiting the number of force definitions required in a force field XML, as many similar atom
types may share force parameters.

8.5. Parameter definitions 23
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8.5.2 Assigning parameters by specificity

Foyer deviates from OpenMM’s convention when matching force definitions in a force field XML to instances of these
forces in a molecular system. In OpenMM, forces are assigned according to the first matching definition in a force
field XML, even if multiple matching definitions exist. In contrast, Foyer assigns force parameters based on definition
specificity, where definitions containing more type attributes are considered to be more specific.

Example:

<RBTorsionForce>
<Proper class1="CT" class2="CT" class3="CT" class4="CT" c0="2.9288" c1="-1.4644" c2="0.

→˓2092" c3="-1.6736" c4="0.0" c5="0.0"/>
<Proper type1="opls_961" type2="opls_136" type3="opls_136" type4="opls_136" c0="-0.

→˓987424" c1="0.08363" c2="-0.08368" c3="-0.401664" c4="1.389088" c5="0.0"/>
</RBTorsionForce>

Above, two proper torsions are defined, both describing a torsional force between four tetrahedral carbons. However,
the first definition features four class attributes and zero type attributes, as this describes a general dihedral for all
tetrahedral carbons. The second definition features zero class attributes and four type attributes, and describes a more
specific dihedral for the case where one end carbon is of type 'opls_961' (a fluorinated carbon) and the remaining
three carbons are of type 'opls_136' (alkane carbons). Now consider we want to use a force field containing the
above torsion definitions to assign parameters to some molecular system that features partially fluorinated alkanes.
When assigning torsion parameters to a quartet of atoms where one end carbon is fluorinated ('opls_961') and the
remaining three are hydrogenated ('opls_136'), if using the OpenMM procedure for parameter assignment the more
general 'CT-CT-CT-CT' torsion parameters (the first definition above) would be assigned because this would be the
first matching definition in the force field XML. However, with Foyer, the second definition will be auto-detected as
more specific, due to the greater number of type attributes (4 vs. 0) and those parameters will be assigned instead.

It should be noted that if two definitions feature the same specificity level (i.e. the same number of type definitions)
then automatic detection of precedence is not possible and parameter assignment will follow the OpenMM procedure
whereby parameters from the first matching force definition in the XML will be assigned.

8.6 Applying a force field

The main method you will use in foyer is the Forcefield.apply() method. There are a few important arguments
you should understand.

The first several are the assert_bond_params assert_angle_params, assert_dihedral_params, and
assert_improper_params. These arguments require that the supplied force field has parameters for every bond,
angle, dihedral, and improper in the system. In most cases, if you get an error, it means that your force field is missing
parameters for one of the bonds/angles/dihedrals/impropers in the system. This could be because the parameters are
missing or because the atom-typing (i.e., the SMARTS strings) are incorrect. These arguments are True by default,
with the exception of assert_improper_params. In all cases, it is wise to verify that the final files you generate have
the expected number of bonds/angles/dihedrals/impropers for your system.

The other important optional argument is the combining_rule option, which is "lorentz" (Lorentz-Berthelot) by
default. The other valid option is "geometric", if your force field uses geometric combining rules.
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8.7 Usage Examples

Foyer supports atomtyping of both all-atom and coarse-grained molecular systems, and also allows for separate force
fields to be used to atom-type separate portions of a molecular system.

8.7.1 Creating a box of ethane

Here we use mBuild to construct a box filled with ethane molecules and use Foyer to atom-type the system, applying
the OPLS force field, and save to run-able GROMACS files.

import mbuild as mb
from mbuild.lib.molecules import Ethane

ethane_box = mb.fill_box(compound=Ethane(), n_compounds=100, box=[2, 2, 2])
ethane_box.save('ethane-box.gro')
ethane_box.save('ethane-box.top', forcefield_name='oplsaa')

8.7.2 Creating a box of coarse-grained ethane

Again we will use mBuild to construct a box filled with ethane molecules. However, now we will model ethane using
a united-atom description and apply the TraPPE force field during atom-typing. Note how particle names are prefixed
with an underscore so that Foyer knows these particles are non-atomistic.

import mbuild as mb

ethane_UA = mb.Compound()
ch3_1 = mb.Particle(name='_CH3', pos=[0, 0, 0])
ch3_2 = mb.Particle(name='_CH3', pos=[0.15, 0, 0])
ethane_UA.add([ch3_1, ch3_2])
ethane_UA.add_bond((ch3_1, ch3_2))

ethane_UA_box = mb.fill_box(ethane_UA, 100, box=[2, 2, 2])
ethane_UA_box.save('ethane-UA-box.gro')
ethane_UA_box.save('ethane-UA-box.top', forcefield_name='trappe-ua')

8.7.3 Combining force fields

In some instances, the use of multiple force fields may be desired to describe a molecular system. For example, the user
may want to use one force field for a surface and another for a fluid in the same system. Foyer supports this functionality
by allowing the user to separately atom-type parts of a system. In this example, we take a system featuring bulk united
atom ethane above a silica surface and apply the OPLS force field to the surface and the TraPPE force field to the ethane.
The two atomtyped Parmed structures are then combined using a simple ‘+’ operator and can be saved to Gromacs files.

from foyer import Forcefield
from foyer.examples.utils import example_file_path
import mbuild as mb

(continues on next page)
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from mbuild.examples import Ethane
from mbuild.lib.atoms import H
from mbuild.lib.bulk_materials import AmorphousSilica
from mbuild.lib.recipes import SilicaInterface
from mbuild.lib.recipes import Monolayer

interface = SilicaInterface(bulk_silica=AmorphousSilica())
interface = Monolayer(surface=interface, chains=H(), guest_port_name='up')

box = mb.Box(mins=[0, 0, max(interface.xyz[:,2])],
maxs=interface.periodicity + [0, 0, 4])

ethane_box = mb.fill_box(compound=Ethane(), n_compounds=200, box=box)

opls = Forcefield(name='oplsaa')
opls_silica = Forcefield(forcefield_files=example_file_path('opls-silica.xml'))
ethane_box = opls.apply(ethane_box)
interface = opls_silica.apply(interface)

system = interface + ethane_box

system.save('ethane-silica.gro')
system.save('ethane-silica.top')

8.8 Examples from Foyer paper

Contained below are the toy examples from the Usage Examples section of the foyer paper. The source code selections
are listed below on this page, there are Jupyter Notebooks where you can try these examples yourself. Note that these
examples are meant to showcase the abilities of foyer through simple examples. If the user would like to examine
more in-depth examples using foyer with mBuild, please refer to the tutorial repository.

Below is Listing 6 from the paper, a python script to fill a 2𝑥2𝑥2𝑛𝑚 box with 100 ethane molecules. The system is
then atomtyped using the OPLS-AA forcefield. There are two approaches to the same problem detailed below in this
listing, the first approach uses the forcefield_files function argument from mBuild to atomptype the system (using
foyer under the hood). While the second approach creates a foyer Forcefield object, which then calls its apply
function, operating on the mBuild Compound to return the properly atomtyped structure. Note that in all instances when
using foyer, the chemical system of interest is converted into a ParmEd Structure. Even the mBuild Compounds,
when calling the save routine, are converted into a ParmEd Structure before foyer can atomtype them. The object
returned by foyer after the atomtypes have been applied are ParmEd Structures. This is subject to change in later
iterations of foyer.
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8.8.1 Homogeneous fluid

import mbuild as mb
from mbuild.lib.molecules import Ethane
from foyer.examples.utils import example_file_path
from foyer import Forcefield

""" Applying a force field while saving from mBuild """
# Create the chemical topology
ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=100, box=[2, 2, 2])
# Apply and save the topology
ethane_fluid.save("ethane-box.top", forcefield_files=example_file_path("oplsaa_alkane.xml
→˓"))
ethane_fluid.save("ethane-box.gro")

""" Applying a force field directly with foyer """
# Create the chemical topology
ethane_fluid = mb.fill_box(compound=Ethane(), n_compounds=100, box=[2, 2, 2])
# Load the forcefield
opls_alkane = Forcefield(forcefield_files=example_file_path("oplsaa_alkane.xml"))
# Apply the forcefield to atom-type
ethane_fluid = opls_alkane.apply(ethane_fluid)
# Save the atom-typed system
ethane_fluid.save("ethane-box.top", overwrite=True)
ethane_fluid.save("ethane-box.gro", overwrite=True)

8.8.2 Fluid on silica substrate

The other example listing from the text showcases the ability to create two separate chemical topologies and applying
different forcefield files to each. The two parameterized systems that are generated are then combined into a single
ParmEd Structure and saved to disk.

from foyer import Forcefield
from foyer.examples.utils import example_file_path
import mbuild as mb
from mbuild.examples import Ethane
from mbuild.lib.atoms import H
from mbuild.lib.bulk_materials import AmorphousSilicaBulk
from mbuild.lib.recipes import SilicaInterface
from mbuild.lib.recipes import Monolayer

# Create a silica substrate, capping surface oxygens with hydrogen
silica=SilicaInterface(bulk_silica=AmorphousSilicaBulk())
silica_substrate=Monolayer(surface=silica,chains=H(),guest_port_name="up")
# Determine the box dimensions dictated by the silica substrate
box=mb.Box(mins=[0, 0,max(silica.xyz[:,2])],maxs=silica.periodicity+ [0, 0, 4])
# Fill the box with ethane
ethane_fluid=mb.fill_box(compound=Ethane(),n_compounds=200,box=box)
# Load the forcefields
#opls_silica=Forcefield(forcefield_files=get_example_file("oplsaa_with_silica.xml"))

(continues on next page)
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opls_silica=Forcefield(forcefield_files=example_file_path("output.xml"))
opls_alkane=Forcefield(forcefield_files=example_file_path("oplsaa_alkane.xml"))
# Apply the forcefields
silica_substrate=opls_silica.apply(silica_substrate)
ethane_fluid=opls_alkane.apply(ethane_fluid)
# Merge the two topologies
system=silica_substrate+ethane_fluid
# Save the atom-typed system
system.save("ethane-silica.top")
system.save("ethane-silica.gro")

8.9 Units

Foyer forcefield XML files use the following units. These follow from the units used in OpenMM.

Quantity Units
distance nm
angle radians
mass amu
energy kJ/mol

Please note that the units of the parameters found in the parameterized parmed.Structure will follow the units used
by ParmEd

8.10 Validation of force field files

Foyer performs several validation steps to help prevent malformed force field files and SMARTS strings from making
it into production code. Our goal is to provide human readable error messages that users who may not be intimately
familiar with XML or our SMARTS parsing grammar can easily act upon.

However, if you receive any unclear error messages or warnings we strongly encourage you to submit an issue detailing
the error message you received and, if possible, attach a minimal example of the force field file that created the problem.

8.10.1 XML schema

As a first line of defense, any force field files loaded by foyer is validated by this XML schema definition. Here we
enforce which elements (e.g. HarmonicBondForce) are valid and how their attributes should be formatted. Addition-
ally, the schema ensures that atomtypes are not 1) defined more than once and that 2) atomtypes referenced in other
sections are actually defined in the <AtomTypes> element.
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8.10.2 SMARTS validation

All SMARTS strings used to define atomtypes are parsed. Parsing errors are captured and re-raised with error messages
that allow you to pin point the location of the problem in the XML file and within the SMARTS string. Wherever
possible, we attempt to provide helpful hints and we welcome any contributions that help improve the clarity of our
error messages.

Additionally, we ensure that any atomtypes referenced using the %type or overrides syntax are actually defined in
the <AtomTypes> element.

8.11 Forcefield Class

The primary data structure in foyer is the Forcefield class, which inherits from the OpenMM class of the same
name. The primary operation on this class is the .apply() function, which takes a chemical topology and returns a
parametrized ParmEd Structure. The user may pass some options to this function based on a particular use case.

class foyer.forcefield.Forcefield(forcefield_files=None, name=None, validation=True, debug=False)
Specialization of OpenMM’s Forcefield allowing SMARTS based atomtyping.

Parameters

• forcefield_files (list of str, optional, default=None) – List of forcefield files to load.

• name (str, optional, default=None) – Name of a forcefield to load that is packaged within
foyer.

apply(structure, references_file=None, use_residue_map=False, assert_bond_params=True,
assert_angle_params=True, assert_dihedral_params=True, assert_improper_params=False,
verbose=False, *args, **kwargs)

Apply the force field to a molecular structure.

Parameters

• structure (parmed.Structure or mbuild.Compound) – Molecular structure to apply the
force field to

• references_file (str, optional, default=None) – Name of file where force field references
will be written (in Bibtex format)

• use_residue_map (boolean, optional, default=False) – Store atomtyped topologies of
residues to a dictionary that maps them to residue names. Each topology, including atom-
types, will be copied to other residues with the same name. This avoids repeatedly calling
the subgraph isomorphism on identical residues and should result in better performance for
systems with many identical residues, i.e. a box of water. Note that for this to be applied
to independent molecules, they must each be saved as different residues in the topology.

• assert_bond_params (bool, optional, default=True) – If True, Foyer will exit if parameters
are not found for all system bonds.

• assert_angle_params (bool, optional, default=True) – If True, Foyer will exit if parame-
ters are not found for all system angles.

• assert_dihedral_params (bool, optional, default=True) – If True, Foyer will exit if pa-
rameters are not found for all system proper dihedrals.

• assert_improper_params (bool, optional, default=False) – If True, Foyer will exit if pa-
rameters are not found for all system improper dihedrals.
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• verbose (bool, optional, default=False) – If True, Foyer will print debug-level information
about notable or potentially problematic details it encounters.

property combining_rule

Return the combining rule of this force field.

property coulomb14scale

Get Coulombic 1-4 scale for this forcefield.

createSystem(topology, nonbondedMethod=NoCutoff, nonbondedCutoff=Quantity(value=1.0,
unit=nanometer), constraints=None, rigidWater=True, removeCMMotion=True,
hydrogenMass=None, switchDistance=None, **args)

Construct an OpenMM System representing a Topology with this force field.

Parameters

• topology (Topology) – The Topology for which to create a System

• nonbondedMethod (object=NoCutoff ) – The method to use for nonbonded interactions.
Allowed values are NoCutoff, CutoffNonPeriodic, CutoffPeriodic, Ewald, or PME.

• nonbondedCutoff (distance=1*nanometer) – The cutoff distance to use for nonbonded
interactions

• constraints (object=None) – Specifies which bonds and angles should be implemented
with constraints. Allowed values are None, HBonds, AllBonds, or HAngles.

• rigidWater (boolean=True) – If true, water molecules will be fully rigid regardless of the
value passed for the constraints argument

• removeCMMotion (boolean=True) – If true, a CMMotionRemover will be added to the
System

• hydrogenMass (mass=None) – The mass to use for hydrogen atoms bound to heavy atoms.
Any mass added to a hydrogen is subtracted from the heavy atom to keep their total mass
the same.

• switchDistance (float=None) – The distance at which the potential energy switching func-
tion is turned on for

• args – Arbitrary additional keyword arguments may also be specified. This allows extra
parameters to be specified that are specific to particular force fields.

Returns
the newly created System

Return type
system

static get_generator(ff, gen_type)
Return a specific force generator for this Forcefield.

Parameters

• ff (foyer.Forcefield) – The forcefield to return generator for

• gen_type (Type) – The generator type to return

Returns
The instance of gen_type for this Forcefield

Return type
instance of gen_type
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Raises
MissingForceError – If the Forcefield doesn’t have a generator of type gen_type

get_parameters(group, key, keys_are_atom_classes=False)
Get parameters for a specific group of Forces in this Forcefield.

Parameters

• group (str) – One of {“atoms”, “harmonic_bonds”, “harmonic_angles”, “peri-
odic_propers”, “periodic_impropers”, “rb_propers”, “rb_impropers”}. Note that these en-
tries are case insensitive

• key (str, list of str) – The atom type(s)/class(es) to extract parameters for

• keys_are_atom_classes (bool, default=False) – If True, the entries in key are considered
to be atom classes rather than atom types

Examples

Following shows some example usage of this function:

>>> from foyer import Forcefield
>>> ff = Forcefield(name='oplsaa')
>>> ff.get_parameters('atoms', key='opls_235') # NonBonded Parameters
{'charge': -0.18, 'sigma': 0.35, 'epsilon': 0.276144}
>>> ff.get_parameters('rb_propers', ['opls_137', 'opls_209', 'opls_193',
→˓'opls_154']) # RBPropers
{'c0': 2.87441, 'c1': 0.58158, 'c2': 2.092, 'c3': -5.54799, 'c4': 0.0, 'c5':
→˓ 0.0}

Returns
A dictionary (or an item in the list of dictionaries) with parameter names as key and the
parameter value as value as it pertains to specific force. Note that the keys of the dictionary
can be different for different forces.

Return type
dict or list of dict

Raises

• MissingParametersError – Raised when parameters are missing from the forcefield or
no matching parameters found

• MissingForceError – Raised when a particular force generator is missing from the
Forcefield

property included_forcefields

Return a dictionary mappying for all included forcefields.

property lj14scale

Get LJ 1-4 scale for this forcefield.

map_atom_classes_to_types(atom_classes_keys, strict=False)
Replace the atom_classes in the provided list by atom_types.

property name

Return the name of the force field XML.
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parametrize_system(structure=None, references_file=None, assert_bond_params=True,
assert_angle_params=True, assert_dihedral_params=True,
assert_improper_params=False, verbose=False, *args, **kwargs)

Create system based on resulting typemapping.

registerAtomType(parameters)
Register a new atom type.

run_atomtyping(structure, use_residue_map=True, **kwargs)
Atomtype the topology.

Parameters

• structure (parmed.structure.Structure) – Molecular structure to find atom types of

• use_residue_map (boolean, optional, default=True) – Store atomtyped topologies of
residues to a dictionary that maps them to residue names. Each topology, including atom-
types, will be copied to other residues with the same name. This avoids repeatedly calling
the subgraph isomorphism on identical residues and should result in better performance for
systems with many identical residues, i.e. a box of water. Note that for this to be applied
to independent molecules, they must each be saved as different residues in the topology.

static substitute_wildcards(atom_types, wildcard)
Return possible wildcard options.

property version

Return version number of the force field XML file.

8.12 Citing foyer

If you use foyer for your research, please cite our paper or its pre-print:

ACS

Klein, C.; Summers, A. Z.; Thompson, M. W.; Gilmer, J. B.; Mccabe, C.; Cummings, P. T.; Sallai, J.; Ia-
covella, C. R. Formalizing Atom-Typing and the Dissemination of Force Fields with Foyer. Computational
Materials Science 2019, 167, 215–227.

BibTeX

@article{klein2019,
title = "Formalizing atom-typing and the dissemination of force fields with foyer",
journal = "Computational Materials Science",
volume = "167",
pages = "215 - 227",
year = "2019",
issn = "0927-0256",
doi = "https://doi.org/10.1016/j.commatsci.2019.05.026",
url = "http://www.sciencedirect.com/science/article/pii/S0927025619303040",
author = "Christoph Klein and Andrew Z. Summers and Matthew W. Thompson and Justin B.␣

→˓Gilmer and Clare McCabe and Peter T. Cummings and Janos Sallai and Christopher R.␣
→˓Iacovella",

keywords = "Molecular simulation, Force fields, Reproducibility, Open-source software
→˓",
}

Download as BibTeX or RIS
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8.13 License

Various sub-portions of this library may be independently distributed under different licenses. See those files for their
specific terms.

Foyer is licensed under the MIT license.

The MIT License (MIT)

Copyright (c) 2015 Vanderbilt University

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
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